Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 973
Filtrar
1.
Chin J Nat Med ; 22(3): 280-288, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38553195

RESUMO

In the current study, tea saponin, identified as the primary bioactive constituent in seed pomace of Camellia oleifera Abel., was meticulously extracted and hydrolyzed to yield five known sapogenins: 16-O-tiglogycamelliagnin B (a), camelliagnin A (b), 16-O-angeloybarringtogenol C (c), theasapogenol E (d), theasapogenol F (e). Subsequent biotransformation of compound a facilitated the isolation of six novel metabolites (a1-a6). The anti-inflammatory potential of these compounds was assessed using pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns molecules (DAMPs)-mediated cellular inflammation models. Notably, compounds b and a2 demonstrated significant inhibitory effects on both lipopolysaccharide (LPS) and high-mobility group box 1 (HMGB1)-induced inflammation, surpassing the efficacy of the standard anti-inflammatory agent, carbenoxolone. Conversely, compounds d, a3, and a6 selectivity targeted endogenous HMGB1-induced inflammation, showcasing a pronounced specificity. These results underscore the therapeutic promise of C. oleifera seed pomace-derived compounds as potent agents for the management of inflammatory diseases triggered by infections and tissue damage.


Assuntos
Camellia , Proteína HMGB1 , Sapogeninas , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Sementes , Chá , Animais
2.
Biomed Pharmacother ; 173: 116461, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503237

RESUMO

Esculeoside A (ESA) is a tomato-derived glycoside with antioxidant and anti-inflammatory properties. The protective effect of ESA against diabetic retinopathy is not well-investigated and was the core objective of this study. In addition, we tested if such protection involves the activation of Nrf2 signaling. Type 1 diabetes mellitus (T1DM) was induced in adult Wistar male rats by an intraperitoneal injection of streptozotocin (65 mg/kg). Non-diabetic and T1DM rats were divided into two subgroup groups given either the vehicle or ESA (100 mg)/kg. An additional T1DM group was given ESA (100 mg/kg) and an Nrf2 inhibitor (2 mg/kg) (n=8 rats/group). Treatments continued for 12 weeks. In this study, according to the histological features, ESA improved the structure of ganglionic cells and increased the number of cells of the inner nuclear and plexiform layers in the retinas of T1DM rats. Concomitantly, it reduced the retina levels of malondialdehyde (lipid peroxides), vascular endothelial growth factor, interleukin-6, tumor necrosis factor-α, Bax, and caspase-3. In the retinas of the control and diabetic rats, ESA boosted the levels of total glutathione, superoxide dismutase, heme-oxygenase-1, and Bcl2, reduced the mRNA levels of REDD1, and enhanced cytoplasmic and nuclear levels of Nrf2. However, ESA failed to alter the mRNA levels of Nrf2 and keap1, protein levels of keap1, plasma glucose, plasma insulin, serum triglycerides, cholesterol, and LDL-c in both the control and T1DM rats. In conclusion, ESA alleviates retinopathy in T1DM rats by suppressing REDD1-associated degradation and inhibiting the Nrf2/antioxidant axis.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Retinopatia Diabética , Sapogeninas , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Ratos Wistar , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Estreptozocina/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/prevenção & controle , Retinopatia Diabética/metabolismo , RNA Mensageiro/metabolismo , Estresse Oxidativo
3.
Molecules ; 29(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474620

RESUMO

Hyperlipidemia, characterized by elevated serum lipid concentrations resulting from lipid metabolism dysfunction, represents a prevalent global health concern. Ginsenoside Rb1, compound K (CK), and 20(S)-protopanaxadiol (PPD), bioactive constituents derived from Panax ginseng, have shown promise in mitigating lipid metabolism disorders. However, the comparative efficacy and underlying mechanisms of these compounds in hyperlipidemia prevention remain inadequately explored. This study investigates the impact of ginsenoside Rb1, CK, and PPD supplementation on hyperlipidemia in rats induced by a high-fat diet. Our findings demonstrate that ginsenoside Rb1 significantly decreased body weight and body weight gain, ameliorated hepatic steatosis, and improved dyslipidemia in HFD-fed rats, outperforming CK and PPD. Moreover, ginsenoside Rb1, CK, and PPD distinctly modified gut microbiota composition and function. Ginsenoside Rb1 increased the relative abundance of Blautia and Eubacterium, while PPD elevated Akkermansia levels. Both CK and PPD increased Prevotella and Bacteroides, whereas Clostridium-sensu-stricto and Lactobacillus were reduced following treatment with all three compounds. Notably, only ginsenoside Rb1 enhanced lipid metabolism by modulating the PPARγ/ACC/FAS signaling pathway and promoting fatty acid ß-oxidation. Additionally, all three ginsenosides markedly improved bile acid enterohepatic circulation via the FXR/CYP7A1 pathway, reducing hepatic and serum total bile acids and modulating bile acid pool composition by decreasing primary/unconjugated bile acids (CA, CDCA, and ß-MCA) and increasing conjugated bile acids (TCDCA, GCDCA, GDCA, and TUDCA), correlated with gut microbiota changes. In conclusion, our results suggest that ginsenoside Rb1, CK, and PPD supplementation offer promising prebiotic interventions for managing HFD-induced hyperlipidemia in rats, with ginsenoside Rb1 demonstrating superior efficacy.


Assuntos
Microbioma Gastrointestinal , Ginsenosídeos , Hiperlipidemias , Sapogeninas , Ratos , Animais , Ginsenosídeos/metabolismo , Dieta Hiperlipídica , Metabolismo dos Lipídeos , Peso Corporal , Ácidos e Sais Biliares
4.
Planta Med ; 90(5): 397-410, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38365219

RESUMO

Agave applanata is a Mexican agave whose fresh leaves are employed to prepare an ethanol tonic used to relieve diabetes. It is also applied to skin to relieve varicose and diabetic foot ulcers, including wounds, inflammation, and infections. In this study, the chemical composition of this ethanol tonic is established and its association with antihyperglycemic, anti-inflammatory, antimicrobial, and wound healing activities is discussed. The fresh leaves of A. applanata were extracted with ethanol : H2O (85 : 15). A fraction of this extract was lyophilized, and the remainder was partitioned into CH2Cl2, n-BuOH, and water. CH2Cl2 and n-BuOH fractions were subjected to a successive open column chromatography process. The structure of the isolated compounds was established using nuclear magnetic resonance and mass spectrometry spectra. The antihyperglycemic activity was evaluated through in vivo sucrose and glucose tolerance experiments, as well as ex vivo intestinal absorption and hepatic production of glucose. Wound healing and edema inhibition were assayed in mice. The minimum inhibitory concentrations (MICs) of the hydroalcoholic extract, its fractions, and pure compounds were determined through agar microdilution against the most isolated pathogens from diabetic foot ulcers. Fatty acids, ß-sitosterol, stigmasterol, hecogenin (1: ), N-oleyl-D-glucosamine, ß-daucosterol, sucrose, myo-inositol, and hecogenin-3-O-α-L-rhamnopyranosyl-(1 → 3)-ß-D-xylopyranosyl-(1 → 2)-[ß-D-xylopyranosyl-(1 → 3)-ß-D-glucopyranosyl-(1 → 3)]-ß-D-glucopyranosyl-(1 → 4)-ß-D-galactopyranoside (2: ) were characterized. This research provides evidence for the pharmacological importance of A. applanata in maintaining normoglycemia, showing anti-inflammatory activity and antimicrobial effects against the microorganisms frequently found in diabetic foot ulcers. This plant plays an important role in wound healing and accelerated tissue reparation.


Assuntos
Agave , Pé Diabético , Sapogeninas , Saponinas , Camundongos , Animais , Agave/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Saponinas/química , Hipoglicemiantes/farmacologia , Anti-Inflamatórios/farmacologia , Etanol , Cicatrização , Glucose , Sacarose
5.
Bioorg Chem ; 145: 107210, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364551

RESUMO

Hecogenin (HCG), a steroidal sapogenin, possesses good antitumor properties. However, the application of HCG for cancer treatment has been hindered primarily by its moderate potency. In this study, we incorporated triphenylphosphonium cation (TPP+) at the C-3 and C-12 positions through different lengths of alkyl chains to target mitochondria and enhance the efficacy and selectivity of the parent compound. Cytotoxicity screening revealed that most of the target compounds exhibited potent antiproliferative activity against five human cancer cell lines (MKN45, A549, HCT-116, MCF-7, and HepG2). Structure-activity relationship studies indicated that the TPP+ group significantly enhanced the antiproliferative potency of HCG. Among these compounds, 3c demonstrated remarkable potency against MKN45 cells with an IC50 value of 0.48 µM, significantly more effective than its parent compound HCG (IC50 > 100 µM). Further investigations into the mechanism of action revealed that 3c induced apoptosis of MKN45 cells through the mitochondrial pathway. In a zebrafish xenograft model, 3c inhibited the proliferation of MKN45 cells. Overall, these results suggest that 3c, with potent antiproliferative activity, may serve as a valuable scaffold for developing new antitumor agents.


Assuntos
Antineoplásicos , Compostos Organofosforados , Sapogeninas , Animais , Humanos , Estrutura Molecular , Sapogeninas/farmacologia , Peixe-Zebra , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Desenho de Fármacos
6.
Immunopharmacol Immunotoxicol ; 46(2): 229-239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38194243

RESUMO

BACKGROUND: Psoriasis is characterized by inflammation and hyperproliferation of epidermal keratinocytes. Cycloastragenol (CAG) is an active molecule of Astragalus membranaceus that potentially plays a repressive role in psoriasis. Activated cell autophagy is an effective pathway for alleviating psoriasis progression. Thus, we investigated the role of CAG in the proliferation and autophagy of interleukin (IL)-22-stimulated keratinocytes. METHODS: A psoriasis model was established by stimulating HaCaT cells with IL-22. Gene or protein expression levels were measured by qRT-PCR or western blot. Autophagy flux was observed with mRFP-GFP-LC3 adenovirus transfection assay under confocal microscopy. Stanniocalcin-1 (STC1) secretion levels were determined using ELISA kits. The apoptosis rate was assessed using flow cytometry. Interactions between miR-145 and STC1 or STC1 and Notch1 were validated by luciferase reporter gene assays, RIP, and Co-IP assays. RESULTS: CAG repressed cell proliferation and promoted apoptosis and autophagy in IL-22-stimulated HaCaT cells. Additionally, CAG promoted autophagy by enhancing miR-145. STC1 silencing ameliorated autophagy repression in IL-22-treated HaCaT cells. Moreover, miR-145 negatively regulated STC1, and STC1 was found to activate Notch1. Lastly, STC1 overexpression reversed CAG-promoted autophagy. CONCLUSION: CAG alleviated keratinocyte hyperproliferation through autophagy enhancement via regulating the miR-145/STC1/Notch1 axis in psoriasis.


Assuntos
Glicoproteínas , MicroRNAs , Psoríase , Sapogeninas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Queratinócitos/metabolismo , Psoríase/tratamento farmacológico , Psoríase/genética , Proliferação de Células/genética
7.
Phytomedicine ; 123: 155167, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952408

RESUMO

BACKGROUND: Protopanaxatriol (PPT) is an important ginsenoside produced by ginseng, a tonic plant used in many areas. PPT has beneficial effects against many disease states including inflammation, diabetes, and cancer. However, PPT's protective effects on skin integrity have been rarely studied. Previously, we reported that PPT can maintain skin moisture through activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) pathways. However, the cellular targets for enhancing skin moisturizing effects via PPT are still unknown. PURPOSE: We wanted to identify the upstream targets of PPT on upregulating moisturizing factor (HAS-2) expression. STUDY DESIGN: We investigated which upstream proteins can be directly stimulated by PPT to modulate NF-κB, MAPKs and other signaling cascades. Then, the targeted proteins were overexpressed to check the relationship with HAS-2. Next, the cellular thermal shift assay (CETSA) was conducted to check the relationship between targeted proteins and PPT. METHODS: A human keratinocyte HaCaT were employed to measure the levels of moisturizing factors and the signaling proteins activated by PPT. Transfection conditions were established with DNA constructs expressing epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) and their mutants prepared by site-directed mutagenesis. Further investigation on molecular mechanisms was conducted by RT-PCR, luciferase reporter gene assay, CETSA, or Western blot. RESULTS: We found that PPT can activate the phosphorylation of EGFR and HER2. These stimulations caused Src phosphorylation, which resulted in the activation of phosphoinositide 3-kinases (PI3K)/pyruvate dehydrogenase kinase 1 (PDK1)/protein kinase B (AKT)/NF-κB and MAPKs signaling cascades. Additionally, EGFR and HER2 activation resulted in phosphorylation of signal transducer and activator of transcription 3 (STAT3) and calcium/calmodulin-dependent protein kinase II (CaMKII). This induced the AMP-activated protein kinase alpha (AMPKα) signaling pathway. Additionally, PPT blocked peroxisome proliferator activated receptor gamma (PPARγ), which also contributed to the phosphorylation of Src. CONCLUSION: Overall, we first found that PPT offers excellent protection of the skin barrier and hydrogen supply in keratinocytes. Moreover, growth factor receptors such as EGFR and HER2 were revealed to be central enzymes to be directly targeted by PPT. These results suggest a potentially valuable role as a cosmetic ingredient.


Assuntos
NF-kappa B , Sapogeninas , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Sapogeninas/farmacologia , Fosforilação , Queratinócitos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores ErbB/metabolismo
8.
Food Chem ; 439: 138046, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029562

RESUMO

In this research, interactions between α-lactalbumin (ALA) and three protopanaxadiol ginsenosides [20(S)-Rg3, 20(S)-Rh2, and 20(S)-PPD] were compared to explore the effects of similar ligand on structure and cytotoxicity of ALA. Multi-spectroscopy revealed the binding between ALA and ginsenoside changed the conformation of ALA, which related to different structures and solubility of ligands. Scanning electron microscope illustrated that all ALA-ginsenoside complexes exhibited denser structures via hydrophobic interactions. Additionally, the cytotoxic experiments confirmed that the cytotoxicity of ginsenoside was enhanced after binding with ALA. Molecular docking showed all three ginsenosides were bound to the sulcus depression region of ALA via hydrogen bonding and hydrophobic interaction. Furthermore, molecular dynamics simulation elucidated the precise binding sites and pertinent system properties. Among all three composite systems, 20(S)-Rh2 had optimal binding affinity. These findings enhanced understanding of the synergistic utilization of ALA and ginsenosides as functional ingredients in food, medicine, and cosmetics.


Assuntos
Ginsenosídeos , Sapogeninas , Ginsenosídeos/farmacologia , Ginsenosídeos/química , Lactalbumina , Simulação de Acoplamento Molecular , Sapogeninas/química , Sapogeninas/farmacologia
9.
Plant Cell Rep ; 43(1): 15, 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38135741

RESUMO

KEY MESSAGE: CRISPR-Cas9-mediated disruption of a licorice cellulose synthase-derived glycosyltransferase gene, GuCSyGT, demonstrated the in planta role of GuCSyGT as the enzyme catalyzing 3-O-glucuronosylation of triterpenoid aglycones in soyasaponin biosynthesis. Triterpenoid glycosides (saponins) are a large, structurally diverse group of specialized metabolites in plants, including the sweet saponin glycyrrhizin produced by licorice (Glycyrrhiza uralensis) and soyasaponins that occur widely in legumes, with various bioactivities. The triterpenoid saponin biosynthetic pathway involves the glycosylation of triterpenoid sapogenins (the non-sugar part of triterpenoid saponins) by glycosyltransferases (GTs), leading to diverse saponin structures. Previously, we identified a cellulose synthase-derived GT (CSyGT), as a newly discovered class of triterpenoid GT from G. uralensis. GuCSyGT expressed in yeast, which could transfer the sugar glucuronic acid to the C3 position of glycyrrhetinic acid and soyasapogenol B, which are the sapogenins of glycyrrhizin and soyasaponin I, respectively. This suggested that GuCSyGT is involved in the biosynthesis of glycyrrhizin and soyasaponin I. However, the in planta role of GuCSyGT in saponin biosynthesis remains unclear. In this study, we generated GuCSyGT-disrupted licorice hairy roots using CRISPR-Cas9-mediated genome editing and analyzed the saponin content. This revealed that soyasaponin I was completely absent in GuCSyGT-disrupted lines, demonstrating the in planta role of GuCSyGT in saponin biosynthesis.


Assuntos
Glycyrrhiza , Sapogeninas , Saponinas , Triterpenos , Glycyrrhiza/química , Glycyrrhiza/genética , Glycyrrhiza/metabolismo , Sapogeninas/metabolismo , Ácido Glicirrízico/metabolismo , Saponinas/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Triterpenos/metabolismo
10.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003339

RESUMO

Sapogenins are the non-sugar parts of saponins (aglycones), high-molecular-weight glycosides linked to one or more sugar side chains. This group of compounds presents many properties, e.g., the potent properties of reducing surface tension and foaming properties, as evidenced by the amphipathic nature of these substances. They are used in the cosmetics industry, the washing and detergent industry, and the food industry. In addition, they have many healing properties. They lower blood cholesterol but are also used to synthesize steroid drugs or hormones. As reported in the literature, saponins also show antitumor activity, leading to cell cycle inhibition and apoptosis of various neoplastic cells. In this study, the influence of two sapogenins: asiatic acid (AA) and oleanolic acid (OA), on the properties of monolayers made of phosphatidylcholine (DPPC) was investigated. The method used in these studies was the Langmuir method with Brewster angle microscopy. The interactions between the tested compounds in mixed monolayers were described. Using mathematical equations, we established that oleanolic acid and asiatic acid formed complexes with DPPC at 1:1 ratios, characterized by high stability constants. We derived the parameters characterizing the formed complexes and described the phase transitions that occur during the formation of pure and mixed monolayers.


Assuntos
Ácido Oleanólico , Sapogeninas , Saponinas , Triterpenos , Água/química , Lecitinas , Propriedades de Superfície , 1,2-Dipalmitoilfosfatidilcolina/química
11.
Molecules ; 28(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687212

RESUMO

Chronic obstructive pulmonary disease (COPD) is a highly prevalent disease that has become the third leading cause of death worldwide. Cycloastragenol (CAG), which is the genuine sapogenin of the main active triterpene saponins in Astragali radix, is a bioavailable pre-clinical candidate for chronic obstructive pulmonary disease (COPD), and it was investigated in our previous study. In order to progress medical research, it was first efficiently produced on a 2.5-kg scale via Smith degradation from astragaloside IV (AS-IV). Simultaneously, since the impurity profiling of a drug is critical for performing CMC documentation in pre-clinical development, a study on impurities was carried out. As these structures do not contain chromophores and possess weak UV absorption characteristics, HPLC-CAD and UPLC-LTQ-Orbitrap-MS were employed to carry out the quality control of the impurities. Then, column chromatography (CC), preparative thin-layer chromatography (PTLC), and crystallization led to the identification of 15 impurities from CAG API. Among these impurities, compounds 1, 4, 9, 10, 14, and 15 were elucidated via spectroscopic analysis, and 2-3, 5-8, and 11-13 were putatively identified. Interestingly, the new compounds 9 and 14 were rare 10, 19-secocycloartane triterpenoids that displayed certain anti-inflammatory activities against LPS-induced lymphocyte cells and CSE-induced MLE-12 cells. Additionally, a plausible structural transformation pathway of the degradation compounds from CAG or AS IV was proposed. The information obtained will provide a material basis to carry out the quality control and clinical safety assurance of API and related prescriptions. Reasonable guidance will also be provided regarding the compounds with weak UV absorption characteristics.


Assuntos
Astrágalo , Doença Pulmonar Obstrutiva Crônica , Sapogeninas , Cromatografia Líquida de Alta Pressão , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
12.
Cancer Chemother Pharmacol ; 92(6): 419-437, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37709921

RESUMO

Ginsenoside Rh2 and its aglycon (aPPD) are one of the major metabolites from Panax ginseng. Preclinical studies suggest that Rh2 and aPPD have antitumor effects in prostate cancer (PCa). Our aims in this review are (1) to describe the pharmacokinetic (PK) properties of Rh2 and aPPD ginsenosides; 2) to provide an overview of the preclinical findings on the use of Rh2 and aPPD in the treatment of PCa; and (3) to highlight the mechanisms of its PK and pharmacodynamic (PD) drug interactions. Increasing evidence points to the potential efficacy of Rh2 or aPPD for PCa treatment. Based on the laboratory studies, Rh2 or aPPD combinations revealed an additive or synergistic interaction or enhanced sensitivity of anticancer drugs toward PCa. This review reveals that enhanced anticancer activities were demonstrated in preclinical studies through interactions of Rh2 and/or aPPD with the proteins related to PK (e.g., cytochrome P450 enzymes, transporters) or PD of the other anticancer drugs or PCa signaling pathways. In conclusion, combining Rh2 or aPPD with anti-prostate cancer drugs leads to PK or PD interactions which could facilitate either therapeutically beneficial or toxic effects.


Assuntos
Antineoplásicos , Ginsenosídeos , Neoplasias da Próstata , Sapogeninas , Masculino , Humanos , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Sapogeninas/farmacocinética , Sapogeninas/uso terapêutico , Interações Medicamentosas , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
13.
mBio ; 14(5): e0059923, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772873

RESUMO

IMPORTANCE: Saponins are a group of plant specialized metabolites with various bioactive properties, both for human health and soil microorganisms. Our previous works demonstrated that Sphingobium is enriched in both soils treated with a steroid-type saponin, such as tomatine, and in the tomato rhizosphere. Despite the importance of saponins in plant-microbe interactions in the rhizosphere, the genes involved in the catabolism of saponins and their aglycones (sapogenins) remain largely unknown. Here we identified several enzymes that catalyzed the degradation of steroid-type saponins in a Sphingobium isolate from tomato roots, RC1. A comparative genomic analysis of Sphingobium revealed the limited distribution of genes for saponin degradation in our saponin-degrading isolates and several other isolates, suggesting the possible involvement of the saponin degradation pathway in the root colonization of Sphingobium spp. The genes that participate in the catabolism of sapogenins could be applied to the development of new industrially valuable sapogenin molecules.


Assuntos
Sapogeninas , Saponinas , Solanum lycopersicum , Humanos , Sapogeninas/metabolismo , Esteroides , Saponinas/metabolismo , Plantas/metabolismo
14.
Fitoterapia ; 170: 105621, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37524127

RESUMO

Diosgenin [25R-spirost-5-en-3ß-ol], isolated from Dioscorea deltoidea was used as a starting material for synthesizing its various isoxazole derivatives. A library of fifteen isoxazole analogues (DG1-DG15) were synthesised via modification at the C-3 hydroxyl group. The resulting analogues were fully characterized by spectral techniques and evaluated for their antioxidant and anticancer activity against four breast cancer cell lines; MDA-MB-231, MDA-MB-468, MCF-7, and 4 T1, using MTT assay. Molecular docking studies were carried out for all analogues with EGFR protein (PDB id: 6LUD) to check their activity by inhibiting EGFR protein, which is an effective strategy for cancer cell death. Furthermore, DFT studies were carried out for four analogues. Among all analogues, compound DG6 and DG9 showed the highest scavenging activity and compound DG9 exhibited a maximum cytotoxic effect on the MDA-MB-468 and MCF-7 cell lines with an IC50 value of 6.25 µg/mL and 6.81 µg/mL, while compound DG5 was the least potent (IC50 25.89 µg/mL). Molecular docking results revealed that DG8 and DG9 afforded the highest binding energy of -14.33 and - 14.71 kcal/mol, respectively for the target EGFR protein. These results demonstrate the potential of diosgenin analogues as drug candidates for breast cancer therapy. Furthermore, DFT studies revealed that the molecules are more polarizable and have smaller energy gap between their HOMO and LUMO orbitals, the smallest being of DG9 (3.221 eV) and hence are more reactive.


Assuntos
Antineoplásicos , Neoplasias da Mama , Dioscorea , Diosgenina , Sapogeninas , Humanos , Feminino , Estrutura Molecular , Diosgenina/farmacologia , Simulação de Acoplamento Molecular , Sapogeninas/farmacologia , Antioxidantes/farmacologia , Proliferação de Células , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Receptores ErbB/farmacologia , Receptores ErbB/uso terapêutico , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais
15.
Neurochem Res ; 48(12): 3525-3537, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37490197

RESUMO

Neuroinflammation is a critical driver in the pathogenesis and progression of neurodegenerative disorders. Dammarane sapogenins (DS), a deglycosylated product of ginsenoside, possess a variety of potent biological activities. The present study aimed to explore the neuroprotective effects of DS in a rat model of neuroinflammation induced by intracerebroventricular injection of lipopolysaccharide (LPS). Our study revealed that DS pretreatment effectively improved LPS-induced associative learning and memory impairments in the active avoidance response test and spatial learning and memory in Morris water maze test. DS also remarkably inhibited LPS-induced neuroinflammation by suppressing microglia overactivation, pro-inflammatory cytok ine release (TNF-α and IL-1ß) and reducing neuronal loss in the CA1 and DG regions of the hippocampus. Importantly, pretreatment with DS reversed LPS-induced upregulation of HMGB1 and TLR4 and inhibited their downstream NF-κB signaling activation, as evidenced by increased IκBα and decreased p-NF-κB p65 levels. Furthermore, DS ameliorated LPS-induced synaptic dysfunction by decreasing MMP-9 and increasing NMDAR1 expression in the hippocampus. Taken together, this study suggests that DS could be a promising treatment for preventing cognitive impairments caused by neuroinflammation.


Assuntos
Disfunção Cognitiva , Fármacos Neuroprotetores , Sapogeninas , Ratos , Animais , Lipopolissacarídeos/toxicidade , Sapogeninas/efeitos adversos , Fármacos Neuroprotetores/efeitos adversos , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Microglia/metabolismo , Hipocampo/metabolismo
16.
Inflammopharmacology ; 31(4): 1951-1966, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37188832

RESUMO

Diosgenin (DGN) is a well-known steroidal sapogenin that is obtained from the hydrolysis of dioscin. The current research aimed to explore the anti-inflammatory and anti-arthritic potential of DGN alone and in combination with methotrexate (MTX). The in-vitro antioxidant, and anti-arthritic potential was assessed by protein denaturation and Human red blood cell membrane stabilization assays. The in-vivo anti-inflammatory effect was examined by carrageenan-induced paw edema and xylene-induced ear edema methods. The arthritis was induced in Wistar rats by inoculation of 0.1 ml Complete Freund's adjuvant in the left hind paw at day 1. The arthritic animals received MTX 1 mg/kg as standard, DGN at 5, 10, 20 mg/kg, and a combination treatment (DGN 20 mg/kg + MTX) was administered orally from 8 to 28th day while normal and disease control received normal saline. DGN at 1600 µg/ml exhibited the highest in-vitro activities in contrast to other tested concentrations. DGN at 20 mg/kg exhibited the maximum (p < 0.05-0.0001) inhibition of inflammation in carrageenan and xyleneinduced edema models. Treatment with DGN and MTX alone and in combination significantly reduced the paw diameter, body weight, arthritic index, and pain. It restored altered blood parameters and oxidative stress biomarkers in contrast to the diseased control rats. DGN profoundly (P < 0.0001) downregulated mRNA expression of TNF-α, IL-1ß, NF-ĸß, and COX-2 while upregulated IL-4 and -10 in treated rats. The combination of DGN with MTX showed the highest therapeutic efficacy than individual therapy, so it can be used as an adjunct for rheumatoid arthritis treatment.


Assuntos
Artrite Experimental , Diosgenina , Sapogeninas , Ratos , Humanos , Animais , Citocinas/metabolismo , Ratos Wistar , Sapogeninas/efeitos adversos , Carragenina/farmacologia , Artrite Experimental/metabolismo , Metotrexato/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Estresse Oxidativo , Edema/tratamento farmacológico , Biomarcadores/metabolismo , Diosgenina/farmacologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-37114792

RESUMO

BACKGROUND: Agave brittoniana subsp. brachypus is an endemic plant of Cuba, which contains different steroidal sapogenins with anti-inflammatory effects. This work aims to develop computational models which allow the identification of new chemical compounds with potential anti-inflammatory activity. METHODS: The in vivo anti-inflammatory activity was evaluated in two rat models: carrageenaninduced paw edema and cotton pellet-induced granuloma. In each study, we used 30 Sprague Dawley male rats divided into five groups containing six animals. The products isolated and administrated were fraction rich in yuccagenin and sapogenins crude. RESULTS: The obtained model, based on a classification tree, showed an accuracy value of 86.97% for the training set. Seven compounds (saponins and sapogenins) were identified as potential antiinflammatory agents in the virtual screening. According to in vivo studies, the yuccagenin-rich fraction was the greater inhibitor of the evaluated product from Agave. CONCLUSION: The evaluated metabolites of the Agave brittoniana subsp. Brachypus showed an interesting anti-inflammatory effect.


Assuntos
Agave , Sapogeninas , Saponinas , Ratos , Animais , Sapogeninas/farmacologia , Agave/química , Ratos Sprague-Dawley , Saponinas/química , Saponinas/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/química
18.
Fitoterapia ; 167: 105498, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004742

RESUMO

Phytochemical investigation of an extract of the aerial parts of Paris polyphylla var. yunnanensis resulted in the identification of three new steroidal sapogenins, namely as paripolins A-C (1-3). With the aid of comprehensive spectroscopic techniques (NMR, IR, UV, MS), the structures of all isolated compounds were elucidated and subsequently screened for anti-inflammatory activity.


Assuntos
Ascomicetos , Liliaceae , Melanthiaceae , Sapogeninas , Saponinas , Saponinas/química , Estrutura Molecular , Esteroides , Liliaceae/química , Componentes Aéreos da Planta
19.
Microb Cell Fact ; 22(1): 66, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024895

RESUMO

BACKGROUND: Cycloartane-type triterpenoids possess important biological activities, including immunostimulant, wound healing, and telomerase activation. Biotransformation is one of the derivatization strategies of natural products to improve their bioactivities. Endophytic fungi have attracted attention in biotransformation studies because of their ability to perform modifications in complex structures with a high degree of stereospecificity. RESULTS: This study focuses on biotransformation studies on cyclocephagenol (1), a novel cycloartane-type sapogenin from Astragalus species, and its 12-hydroxy derivatives (2 and 3) to obtain new telomerase activators. Since the hTERT protein levels of cyclocephagenol (1) and its 12-hydroxy derivatives (2 and 3) on HEKn cells were found to be notable, biotransformation studies were carried out on cyclocephagenol and its 12-hydroxy derivatives using Camarosporium laburnicola, an endophytic fungus isolated from Astragalus angustifolius. Later, immunoblotting and PCR-based ELISA assay were used to screen starting compounds and biotransformation products for their effects on hTERT protein levels and telomerase activation. All compounds showed improved telomerase activation compared to the control group. CONCLUSIONS: As a result of biotransformation studies, seven new metabolites were obtained and characterized, verifying the potential of C. laburnicola as a biocatalyst. Additionally, the bioactivity results showed that this endophytic biocatalyst is unique in transforming the metabolites of its host to afford potent telomerase activators.


Assuntos
Ascomicetos , Sapogeninas , Telomerase , Sapogeninas/metabolismo , Telomerase/metabolismo , Ascomicetos/metabolismo , Biotransformação
20.
Chem Rec ; 23(4): e202300048, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36995067

RESUMO

A biographical essay is presented on the chemical research of Russell E. Marker (1902-1995). The biography begins in 1925 with Marker's decision to forgo a Ph.D. in chemistry because he did not wish to complete the course requirements at the University of Maryland. Marker then took a position at the Ethyl Gasoline Company where he helped develop the octane rating for gasoline. He then moved to the Rockefeller Institute where he studied the Walden inversion, and then to Penn State College where his already prolific publication record soared to even greater heights. In the 1930s, Marker became fascinated with steroids and their potential as pharmaceuticals and collected specimens from plants in the southwest US and Mexico, discovering many sources of steroidal sapogenins. With his students at Penn State College, where he rose to full professor, he discovered the structure of these sapogenins and invented the "Marker degradation" that converted diosgenin and other sapogenins into progesterone. Together with Emeric Somlo and Federico Lehmann, he co-founded Syntex and began the manufacture of progesterone. Shortly thereafter, he left Syntex, began another pharmaceutical company in Mexico, then quit chemistry altogether. A discussion of Marker's legacies and the ironies in his professional career is provided.


Assuntos
Progesterona , Sapogeninas , Humanos , Masculino , História do Século XX , Gasolina , Indústria Farmacêutica/história
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...